Al-Farabi Kazakh National University

Overview of studies

FA.Iskakova

Department of Epidemiology, Biostatistics and Evidence-Based Medicine

2020

Descriptive vs. analytic studies

Descriptive study	Analytic study
 No advance hypothesis Accept that associations may or may not be causal Often use pre-existing data 	 Driven by hypothesis or hypotheses Hypothesis usually proposes a causal link More often require new data collection

Hypothesis for analytic study

Synonyms: • Risk factor

• Possible cause

Exposure

- Predictor
- Independent variable

• Disease

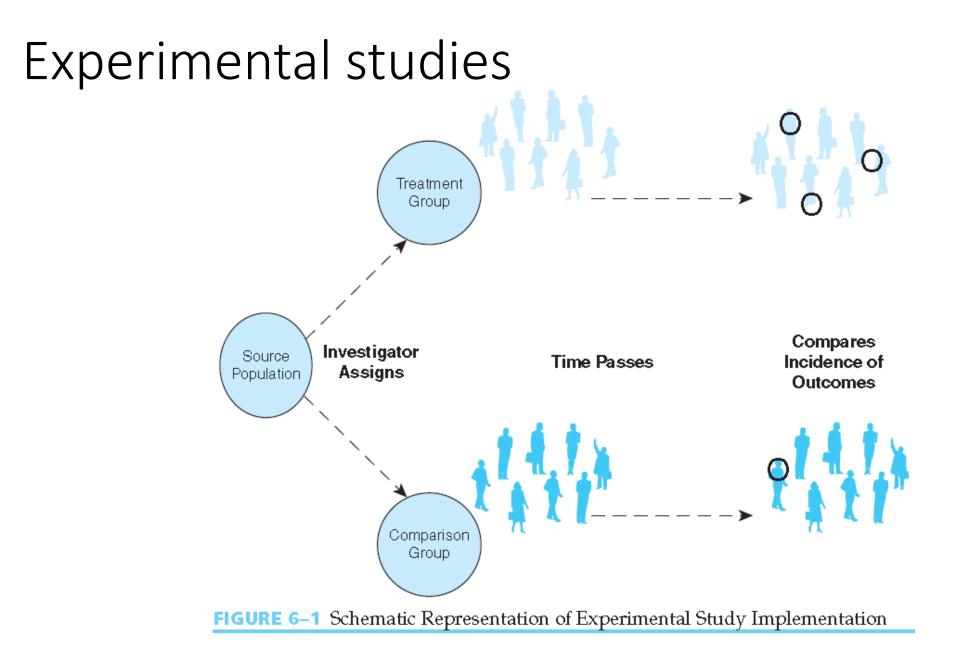
Outcome

• Effect

?

- Response
- Dependent variable

Experimental vs. observational studies


Experimental study	Observational study
 Investigator assigns exposure status More closely resemble controlled laboratory experiments "Gold standard" of epidemiology Not feasible or ethical for some exposures 	 Investigator observes exposure status More feasible and ethical for some exposures

Experimental studies

- Purpose: Investigate the role of some agent in the prevention or treatment of disease
 - Preventive or prophylactic trial
 - Therapeutic or clinical trial
- Investigator assigns individuals to:
 - Treatment group(s)
 - Comparison group(s) (e.g., placebo)
- Usually using process of randomization
- Selecting study participants
 - Eligibility criteria
 - Prevention trial: healthy or high-risk individuals
 - Clinical trial: individuals with specific diseases
 - Informed consent

Experimental studies

- Selecting study participants
 - Eligibility criteria
 - Prevention trial: healthy or high-risk individuals
 - Clinical trial: individuals with specific diseases
 - Informed consent
- Random assignment
 - Groups are similar to each other on other factors
 - Equipoise is necessary
 - Uncertainty about best course of action
- Analysis
 - Outcomes compared in treatment and comparison groups
 - Intent-to-treat analysis
 - Groups are analyzed according to randomization regardless of actual compliance
 - Efficacy analysis
 - Groups are analyzed according to compliance

Experimental studies

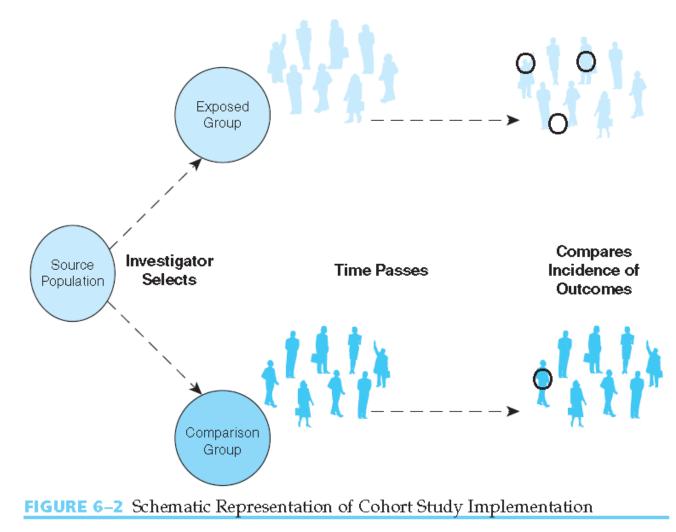
Strengths

- Superior control over confounding factors, even if unknown or hard to measure
- Exposure clearly precedes outcome
- Can estimate incidence in both groups
- Easy to study several outcomes

Weaknesses

- Not always possible or ethical to manipulate exposure at random
- Inefficient for rare or long-delayed outcomes

Observational analytic studies


- Cohort studies
 - Healthy subjects are selected according to their exposure status and followed over time to determine the incidence of disease
- Case-control studies
 - Subjects are selected according to their disease status and their exposure histories are reviewed

- Purpose: Investigate the causal or preventive role of a particular exposure
- Cohort = group of people with common characteristic
- Also known as follow-up, incidence, or longitudinal studies

- Selecting study participants
 - Special cohorts for rare exposures
 - General population cohorts for more common exposures
 - "Exposed" and "Unexposed" groups
 - Relative sizes of exposed and unexposed groups need not reflect frequency of exposure in underlying population

- Prospective cohort study
 - Individuals grouped based on past or current exposure and followed into future to observe outcomes
 - Outcome has not yet occurred at the start of the study
- Retrospective cohort study
 - Both exposures and outcomes have already occurred at the start of the study

- Analysis
 - Cumulative incidence or incidence rate compared in exposed and unexposed groups
 - Multiple outcomes can be assessed

Strengths

- Exposure known to precede outcome
- Can estimate incidence in both groups
- Easy to study multiple outcomes
- Efficient for rare exposures

Weaknesses

- Inefficient for rare outcomes
- If prospective, can be costly for large samples or delayed outcomes

Cohort (A) or Case-control study (B)

- Interested in rare outcome?
- Interested in rare exposure?
- Interested in multiple outcomes?
- Interested in multiple exposures?
- Interested in outcome that takes a long time to develop?

Descriptive studies

- Cross-sectional studies
- Ecologic studies

Cross-sectional studies

- Purpose: Examine associations between diseases and other variables of interest in a defined population at one particular time
- Snapshot of population at one time
 - Measure disease prevalence in relation to exposure prevalence
 - Cannot determine if exposure preceded disease

Ecologic studies

- Purpose: Examine rates of disease in relation to population-level exposure measures
 - Units of analysis are groups rather than individuals
- Associations observed at the group level do not necessarily hold at the individual level
- Usually quick and inexpensive when using available data

Choice of study design

- Research question
- Existing scientific knowledge
- Frequency of exposure and disease
- Ethical considerations
- Concerns about validity, random error, efficiency

Choice of study design

- Can use multiple study designs to assess one particular research question
- Example: We hypothesize that people who consume a diet high in vitamin A have a lower risk of lung cancer as compared to people who consume a diet low in vitamin A.

Ecologic study

• Relate mean vitamin A consumption at the state level to state-level lung cancer mortality rates

Cross-sectional study

- Survey subset of particular population
- Ascertain information about vitamin A consumption
- Ascertain information about lung cancer status

Case-control study

- Select lung cancer cases
- Identify suitable controls
- Ascertain past vitamin A consumption among cases and controls

Cohort study

- Select individuals with high and low levels of vitamin A consumption
- Follow over time for development of lung cancer
- Compare incidence of lung cancer in those with high and low levels of vitamin A consumption

Experimental study

- Assign individuals to high and low levels of vitamin A consumption
- Follow over time for development of lung cancer
- Compare incidence of lung cancer in those with high and low levels of vitamin A consumption